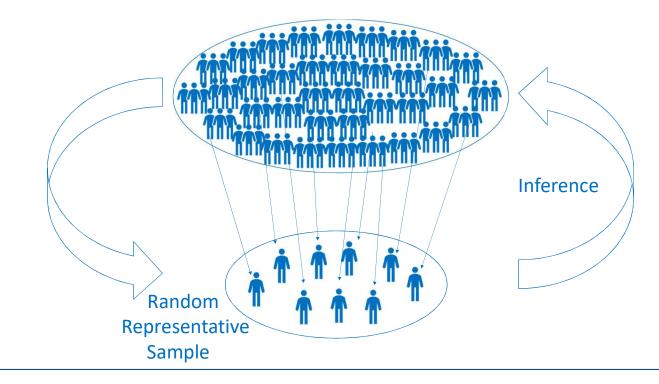


TOOLS AND METHODS: HOW TO ANALYZE THE OUTPUT OF RESEARCH HOW TO DO HYPOTHESIS TESTS

Maciej Wolny

How to analyze the output of research



Agenda – how to test statistical hypothesis

- Introduction
- Statistical inference and statistical hypotheses
- Significance level and p-value
- Hypotesis test
- Example(s): soap vs shower gel

Introduction - Inferential statistics

Inferential statistics use a random sample of data taken from a population to describe and make inferences about the population.

Silesian University of Technology

Statistical hypotheses

• Every judgement about population without research of the entire population.

Hypothesis testing is formulated in terms of two hypotheses:

- H_0 : the null hypothesis;
- *H*₁: the alternate hypothesis.
- Null hypothesis (H₀) is general statement, that there is no relationship between two (or more) measured phenomena (or no association among groups). It can be a statement about value of the parameter for one variable.

I.e. Null hypothesis – The population mean of weekly size of soap distribution is equal to 1650 boxes. Formally: H_0 : m= 1650

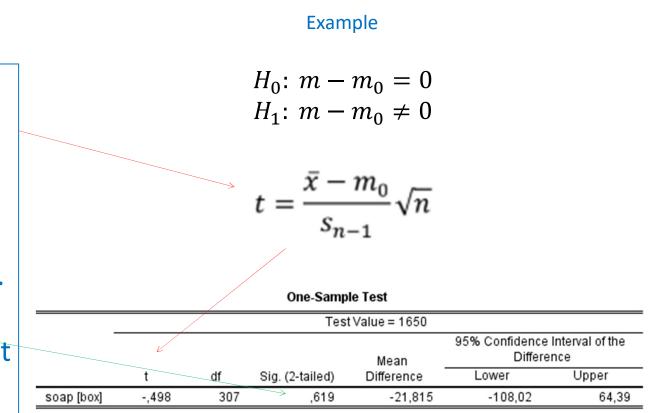
- The null hypothesis is assumed to be true until **there is no reason to reject the hypothesis**.
- If the H_0 is rejected, then alternative hypothesis H_1 is accepted.

Error types

	Real situation			
	H _o is true	H ₁ is true		
Accept null hypothesis	Right decision $(1-\alpha)$	Wrong decision Type II Error (β)		
Reject null hypothesis	Wrong decision Type I Error (α)	Right decision (1-β)		

Significance level and p-value

- <u>Significance level (α)</u> the probability of the study rejecting the null hypothesis, when it is true.
- Significance level must be stated by researcher (usually: 0,001; 0,01; 0,05; 0,1)
- <u>Confidence level $(1-\alpha)$ </u> the probability that the value of a parameter falls within a specified range of values (confidence interval).
- <u>P-value</u> tested value of probability, is a borderline value of statistical significance.
- The result is <u>statistically significant</u>, by the standards of the study, when $p < \alpha$.


<u>Alternative hypotesis H₁</u>

- Alternative hypothesis can be formulated one-tailed or two-tailed.
- The definition of hypotesis H₁ determines type of statistical test.
- ٠
- Another one-tailed test could have the form. • H_0 : $\theta = \theta_0$ In a two-tailed test check for differences: • H_0 : $\theta = \theta_0$ • H_1 : $\theta > \theta_0$. • H_0 : $\theta = \theta_0$ • H_1 : $\theta < \theta_0$. • H_1 : $\theta \neq \theta_0$. This is a one-tailed test with the critical region in the right-tail in which the critical region is in the left-tail. of the test statistic X. θ_0 θ_0 θ_0 reject H_0 reject H_0 reject H_0 reject H_0 http://www.sci.utah.edu/~arpaiva/classes/UT ece3530/hypothesis testing.pdf $H_0: m = 1650$ H₀: m= 1650 H₀: m= 1650 H₁: m < 1650 H₁: m ≠ 1650 H₁: m > 1650

Test statistic

- Statistic mathematical formula which allows to count the characteristic value of the sample on basis of theoretical background of hypothesis.
- P-value is a function of statistic.
- Decision rule result of the comparison of values. If the test statistic is in the critical region (p < α), reject H0. Otherwise, do not reject H0

There is no reason to reject the hypothesis H₀

(Summary) Steps in the hypothesis testing

- 1. State the null and alternate hypothesis.
- 2. State significance level (α).
- 3. Choose the test statistic and establish the critical region.
- 4. Compute the test statistic (and p-value).
- 5. If the test statistic is in the critical region ($p < \alpha$), reject H0. Otherwise, do not reject H0.

• Example: Test of means

Is there a significant difference between average weekly number of distributed soap boxes and average weekly number of distributed shower gel boxes?

 $H_0: m_1 - m_2 = 0$ $H_1: m_1 - m_2 \neq 0$

Paired Samples Test									
		Paired Differences							
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	soap (box) - shower gel [box]	68,786	502,903	28,656	12,400	125,172	2,400	307	,017

The hypothesis H0 is rejected, there is a significant difference between the average values.

Excel ... last time

Data Analysis		? ×
Analysis Tools		ОК
Histogram Moving Average Random Number Ger Rank and Percentile Regression Sampling LTEST: Paired Two Sample A	neration	Cancel
	ssuming Unequal Variances	~
Test: Paired Two Sampl	e for Means	? ×
nput		ОК
/ariable <u>1</u> Range:	SB\$1:SB\$309	Cancel
/ariable <u>2</u> Range:	\$C\$1:\$C\$309	
Hypoth <u>e</u> sized Mean Diff	erence: 0	Help
Labels		
Labers		
Alpha: 0,05	Î]
Alpha: 0,05 Dutput options	<u>1</u>	

t-Test: Paired Two Sample for Means		
	soap [box]	shower gel [box]
Mean	1628,185065	1559,399351
Variance	591126,679	394826,6446
Observations	308	308
Pearson Correlation	0,758673726	
Hypothesized Mean Difference	0	
df	307	
t Stat	2,400429861	
P(T<=t) one-tail	0,008485447	
t Critical one-tail	1,649832147	
P(T<=t) two-tail	0,016970894	
t Critical two-tail	1,967721288	

The hypothesis H₀ is rejected, ...

Internet References

- <u>http://onlinestatbook.com/</u>
- <u>https://support.minitab.com/en-us/minitab-express/1/</u>
- <u>https://medium.com/datadriveninvestor/p-value-significant-level-and-hypothesis-testing-4895524ec3f3</u>
- <u>http://www.sci.utah.edu/~arpaiva/classes/UT_ece3530/hyp_othesis_testing.pdf</u>

Təşəkkür edirəm

