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Abstract – The article presents an example of an extension 

of Multi-agent influence diagram (MAID) proposed by 

Koller and Milch with some concepts derived from 

Sequential influence diagram (SID) described by Jensen, 

Nielsen and Shenoy. Its main aim is to test if these two 

graphical languages can be merge in order to deal with an 

asymmetric multi-agent scenario. An example of such a 

scenario is given and it is modeled and solved using 

techniques derived from these two languages. The obtained 

solution is verified using traditional game-theoretic method. 
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I. INTRODUCTION 

Game theory has been widely used in modeling 
multi-agent systems in which autonomous agents interact 
with each other. However, although two basic forms of 
representing games, i.e. normal form (game matrix) and 
extensive form (game tree) are able to model every real-
life situation, they suffer from unnecessary exponential 
growth and lack the ability of describing the dependence 
relationship between variables [1]. During the last few 
years there appeared some new concepts of game 
representation, such as game network [2], graphical game 
[3] and multi-agent influence diagram (MAID) [4], which 
allow to represent games in a more compact way. These 
new forms of game representation (described in [5] as 
“structured games”) arose out of the attempts of  
connecting the single-agent graphical models of reasoning 
under uncertainty with techniques from game theory, and 
adapting them to multi-agent scenarios [6]. 

Derived from the probabilistic graphical models such as 
Bayesian nets or influence diagram, structured games 
inherits their difficulties with modeling asymmetric 
situations – when possible variables’ states depend on the 
previous moves. There are many graphical techniques for 
dealing with asymmetric single agent decision problems 
[7]. One of the most recent developments in this area is 
sequential influence diagram (SID) presented in [8]. SID 
can be seen as an influence diagram with some nodes 
connected together (creating a cluster of nodes which 
allows to represent a partial temporal ordering between 
variables) and with structural arcs, each associated with a 
condition (called a guard) under which the next variable in 
the scenario is the variable associated with the node that 
the arc points to. Solving an SID requires an additional 
computational structure called a decomposition graph. 

The aim of the paper is to extend the multi-agent 

influence diagram framework with some methods used in 
SID. We take the concepts derived from SID and give an 
example of how to use them to model and solve an 
asymmetric multi-agent scenario (represented as a game 
with incomplete information) when the decision variables 
are split variables, i.e. agents’ decisions changes structure 
of the scenario.  

II. MULTI-AGENT INFLUENCE DIAGRAM 

Multi-agent influence diagram (MAID) was proposed 

by Koller and Milch in [4] as a new representation of 

games, especially games with incomplete information. In 

general, MAID is an influence diagram (ID) (see [9, 10]) 

extended to the multi-agent environment. Like ID, MAID 

is a directed acyclic graph consisting of three types of 

nodes: decision nodes D (represented as rectangles), 

chance nodes C (ovals) and utility nodes U (diamonds). 

Each node in the graph corresponds to a variable in the 

scenario (game). Decision and utility nodes (variables) are 

partitioned into disjoint sets Di and Ui for each i   N, 

where N={1,2,…,n} is a set of agents. Each variable C   

C is associated with conditional probability distribution 

(CPD), which specifies probability distribution over a set 

of possible outcomes of C. For a utility node U   U game 

specifies a deterministic real-valued function which 

represents the utility (payoff) of agent. 
A CPD associated with decision variable is called a 

decision rule. An assignment of decision rules to all D   
Di is called a strategy of agent i. A strategy profile   is an 
assignment of decision rules to all decision variables. It 
defines a joint probability distribution P  over all variables 
in X=C! D! U and we can calculate this using the 
chain rule for Bayesian network [9]. The expected utility 
EUi( ) that agent i receives under   is then equal to the 
sum of the expected utilities of all i’s utility nodes. The 
aim of each of the agents in MAID is to maximize their 
expected utility by choosing optimal strategy with respect 
to the strategy of all other agents. Given a MAID M if, for 
all i   N,  i is optimal for the strategy profile   in M, then 
  is a Nash equilibrium in M (see Def. 3 and 4 in [4]).  

Koller and Milch proved in [4] that a game represented 
as MAID is equivalent to its extensive form and showed 
how to convert one into another. But it is also shown that 
MAIDs have some advantages over game trees. Firstly, 
MAID is usually much smaller than the equivalent game 
tree (size of a MAID grows linear in the number of 
variables while size of a game tree is exponential). So 
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MAIDs are often much more convenient for representing 
a multi-agent scenario. Secondly, graphical part of a 
MAID can give us information about dependencies 
between variables which can simplify the computations of 
Nash equilibrium.  

Koller and Milch provide a definition of a strategic 
relevance – intuitively, a decision node D’   D-i is 
strategically relevant to a decision node D   Di if in order 
to optimize a decision rule for D agent i must know the 
decision rule for D’ (a graphical criterion for finding 
strategic relevance is called s-reachability). Strategic 
relevance allows us to construct a relevance graph, a 
directed graph with only decision variables as nodes and 
with arcs indicating strategic relevance between them. If 
the relevance graph is acyclic then the game can be solved 
simply by choosing the optimal decision rules for the 
decision variables in the reverse topological order of the 
decision nodes. If there are cycles then the game is 
decomposed into smaller ones, according to the strongly 
connected components (SCC) of the graph. Each of these 
games can then be solved individually (either by 
transforming into an extensive form like in [4] or by 
applying the algorithm from [5]). The computational 
effort of finding the Nash equilibrium in MAIDs is often 
much smaller than in game trees. 

Example of a game in the MAID form is shown in 
Figure 1. It is a simple game of incomplete information 
called “signaling game” [11]. Nature moves first and 
chooses a “type” for agent 1. This move is represented by 
a chance node Type. Agent 1, knowing his type (this 
knowledge is represented by informational arc from node 
Type to node D1), makes decision D1. The true state of 
the variable Type is not revealed to agent 2 (no arc from 
node Type) who can only observe agent 1’s action when 
making decision D2. Agent 1’s payoff U1 depends on the 
variables Type, D1 and D2. Agent 2’s payoff U2 depends 
on the variables Type and D2. The relevance graph of this 
game is cyclic – all agents need to know opponent’s 
decision rule in order to optimize their payoff (even 
though agent 2 can observe action in D1, he does not 
know the true state of the variable Type; knowledge about 
the decision rule for D1 would reveal this information and 
allow to maximize U2). 

 

Fig. 1. MAID for a signaling game. 

III. SEQUENTIAL INFLUENCE DIAGRAM 

Sequential influence diagram (SID) is a language 
proposed by Jensen, Nielsen and Shenoy in [8] for 

modeling asymmetric decision problems. In this section 
we will briefly describe its features. As we are interested 
only in structural asymmetry, we will omit some of the 
parts connected with order asymmetry (such as the 
conception of cluster of nodes), referring to [8] for more 
details. 

In general, an SID is an influence diagram with 
additional arcs called structural arcs, represented by 
dashed arrows. These arcs describe the information 
precedence and structural asymmetry. Each structural arc 
(X,X') is associated with an annotation g(X,X') called a guard 
which describes the conditions (the state of the variable X) 
under which the next node after X is X'.  

If a variable belongs to the domain of some guard in 
SID, it is called a split variable. Each SID induces a partial 
temporal order   on the nodes. Split variable X is called 
an initial split variable if there is no split variable X' so 
that X' X. Instantiating a split variable means setting its 
value to a specific state. By instantiating a split variable X 
to some value x in an SID I we get a new SID I[X x].  

Solving an SID requires an additional structure, a 
directed acyclic graph called a decomposition graph. Each 
of its nodes is associated with pair (X, S), where X is a 
subset of the decision and chance variables, and S is either 
a split variable or an empty set. Jensen, Nielsen and 
Shenoy give a recursive algorithm for constructing a 
decomposition graph  with a tree structure. 

Each node in the decomposition graph is initialized 
with proper probability (tables of conditional or prior 
probabilities associated with nodes) and utility potentials. 
After this initialization the decomposition graph is 
traversed from the leaves towards the root. When visiting 
a node, using the marginalization and multiplication of the 
potentials, we eliminate the split variable and free variable 
associated with the node (see [9] for more information 
about the algebra of potentials). By recursively 
eliminating the variables we can get the optimal policy for 
an agent. 

IV. ASYMMETRIC MULTI-AGENT INFLUENCE 

DIAGRAM – A SIMPLE BLACKJACK GAME 

We will begin with presenting a game which we called 
a “simple blackjack” [12]. Two agents play a card game 
with a deck containing six cards. The cards are of the 
value 0, 1 or 2 (two of each kind). Agent 1 draws a card 
and after seeing its value decides whether to draw another 
one. After that agent 2 (who saw the agent 1’s decision) 
draws a card and makes a similar decision. A game is won 
by the agent whose hand has value of 2 or less and either 
he has more points than his opponent or his opponent has 
more points than 2. If both agents’ hands are of equal 
values or both have more than 2 points – there is a tie.  

An asymmetric MAID for this scenario is shown in 
Figure 2. There are two decision nodes D1? and D2? 
(rectangles) representing decisions made by agent 1 and 
agent 2 respectively. Four chance nodes D11, D12, D21 
and D22 (ovals) represent nature’s moves. Variables D11, 
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D12 represent values of the cards from the first and 
possibly the second drawing of agent 1; similarly D21, 
D22 represent values of the cards of agent 2.  There are 
also four utility nodes U1, U2, U3 and U4. Each agent 
gets 2 if he wins, 1 if there is a draw and 0 when he loses. 
Since this is a sum-zero game (agents can either win/lose 
or draw) the utility nodes represent the payoffs of both 
agents. They are conditioned by the states of the decision 
variables, e.g. U3|n,y means that U3 is considered in the 
scenario only when D1?=no and D2?=yes. 

 

Fig. 2. Asymmetric MAID for "simple blackjack" game. 

You can see some structural arcs in the graph. 
Structural arcs from D1? mean that when agent 1 chooses 
to draw another card, variable D12 appears in the scenario 
and makes an impact on the probability distribution of the 
variable D21 and possibly D22. If D1?=no, then D12 is 
not present in the scenario and the probability potentials 

are changed, by marginalizing D12: 21"  changes into 
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Notice that, unlike in SID, informational arcs in this 
asymmetric MAID are solid arcs to distinguish them from 
the structural arcs with guards. 

A multi-agent influence diagram for the “simple 
blackjack” game is very similar except that there is just 
one utility node (representing the payoff of both players) 
connected by additional arcs with D1? and D2?, and the 
structural arcs are replaced by conditional arcs. 
Comparing to MAID, the asymmetric MAID consists of 
more variables, but their potentials are often much smaller 
(e.g. the largest utility potential U4 has 34=81 entries 

while the utility potential in MAID has 3422=324 entries 
(It can be reduced by putting some additional dummy 
variables into the model.). Secondly, to deal with 
asymmetry some variables in the MAID must contain 
dummy states which make the graphical representation of 
the problem not as clear as in the asymmetric MAID.  

V. SOLVING AN ASYMMETRIC MAID 

Solving a game in asymmetric MAID form requires 
constructing the decomposition graph and initializing it 
with potentials. Like in SID, we begin with eliminating 
the free variables in the leaf nodes and with calculating 
(for each agent) the new utility potentials. These messages 
are sent upwards to the parent node. When the potentials 
come to the node associated with the decision split 
variable S, for each instantiation of the parents of S a 
domination criterion is applied. 

Definition Let S be a decision split variable of agent A 

with possible states s1,s2,…, sn, let {!i(Xu,Xo,si)} be the set 

of A’s utility potentials differed only in S, where Xu is the 
set of the variables unobserved when making a decision in 
S and Xo is the set of the variables which state is observed 

before making a decision in S. Then we say that decision k 
dominates decision j " k in instantiation x0   dom(Xo) if 
for each xu   dom(Xu)  
 

# $ # $joujkouk sxxsxx ,,,, )) *  (3) 

If (3) is fulfilled for each j " k  then we say that decision k 

is dominating. 

A domination criterion is analogous to the classic 
game-theoretical term [11]. It identifies strategies which 
are the best responses (considering the current knowledge) 
regardless of the state of the unobserved variables. When 
decision is dominating then in the behavior strategy the 
equivalent action is played with probability 1.  

If there are dominating strategies, the partial decision rules 
are assigned to variable S. If the root node is reached and 
dominating strategies were found, we move downward the 
tree, again applying a domination criterion (in some cases we 
can even calculate the expected utility of the decisions using 
the probability inference). We end this process when there 
were no dominating strategies found during the iteration. 
After the iteration process, if all decision rules were assigned, 
the resulting strategy profile constitutes the Nash equilibrium. 
A decomposition graph for the “simple blackjack” 
asymmetric MAID is shown in Figure 3. 

 

Fig. 3. Decomposition graph for "simple blackjack" game. 
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It is a tree with internal nodes associated with split 
variables (there are two split variables: D1? and D2?). 
The utility potentials and some free variables (those which 
are not observed until all decisions are made so their 
values have no impact on agents’ decisions) are associated 
with the leaves. 

We begin with the elimination of the free variables in 
the leaf nodes and calculate the new utility potentials !, 
e.g. in node N3 we have: 
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In a similar way we eliminate variable D12 in node N4. 

The calculated potentials !3 and !4 (in the form of 3x3 
tables) are then sent upwards to node N2, combined and 
conditioned on the state of the split variable D2?. After 
that, the domination criterion is applied. Table I presents 
this situation. Here D2? is the decision split variable, 
observed variables are D21 and D1? (which has value 
“yes”) and there is one unobserved variable D11. When 
we compare values in the first two rows we get that 
regardless of the value of agent 1’s first card, it is always 
better for agent 2 to draw if he gets 0 in the first drawing 
(in case agent 1 drew second card).  

The domination criterion gives us that agent 2 should 
draw if D21 equals 0 and he should not draw if D21 
equals 2. Then we do the same with nodes N6 and N7 and 
we get exactly the same decision rule for agent 2 if agent 
1 did not draw second card. The potentials are then 

reduced according to the decision rules we obtained. Next, 
the variable D21 is eliminated and the four potentials are 
sent to the node N1 and combined, so the resulting 
potentials are in the form !(D11, D1?=yes, D2?) and 
!(D11, D1?=no, D2?). By domination criterion we get the 
strategy for agent 1: drawing the second card only when 
the first was 0. This information is then sent downward to 
the nodes N2 and N5 and the utility potentials are reduced 
according to the agent 1’s strategy. Once again the 
domination criterion gives us that agent 2 should not draw 
if D21 equals 1 and agent 1 drew. If D21 equals 1 and 
agent 1 did not draw then the domination criterion is not 
helpful. In this case however it is possible to make 
probability inference P(D11 | D21, D1? = no) and this 
way the expected utility of the two possible actions in D2? 
can be calculated.  

Table I 

VALUES OF POTENTIALS #3 AND #4 

 D11 

D21 D2? 0 1 2 

y 1 1.5833 1.5833 
0 

n 0 1 1.5 

y 0.4167 1 1.083 
1 

n 0.75 1.5 1 

y 0.4167 0.9167 1 
2 

n 1.75 1.75 1.5 

 
Following the steps described above we get strategies in 

equilibrium presented in Table II. The same strategy 
profile we get when solving the “simple blackjack” game 
tree with a GAMBIT [13]. 

Table II 

STRATEGIES IN EQUILIBRIUM 

Agent 1 draw second card only if 0 in the first drawing 

1st strategy: draw second card only if 0 in the 
first drawing 

Agent 2 2nd strategy: draw second card  if 0 in the first 
drawing OR 1 in the first drawing and the 
opponent did not draw second card 

 

VI. DISCUSSION AND FUTURE WORK 

Using the techniques presented, we will get Nash 
equilibrium only in limited cases – when we can find best 
strategies by applying the domination criterion. Even if we 
do not find equilibrium, we can still take advantage of the 
calculations to build an extensive form (often with a 
smaller size than the straightforward representation of a 
scenario) and use the traditional game-theoretic methods. 

The main advantage of using this graphical language is 
more compact representation of a scenario. Notice that the 
extensive form of the presented game is a tree with 111 
leaf nodes while the asymmetric MAID consists of 10 
nodes only. The next thing is the better visualization of the 
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structure of a scenario, a relationship between variables is 
more explicit and all can be read from the graphical part 
of a model. With an extensive form sometimes we cannot 
deduce about variables’ dependencies without looking at 
the quantitative part of a model. 

The presented conception of asymmetric MAID opens 
perspectives for future work. Firstly, we did not give the 
precise algorithm for solving a game in this form. New 
problems which we do not deal with will probably arise 
when formulating this. Next, there are some open 
questions connected with an SID (e.g. problem of finding 
the optimal structure of the decomposition graph) which 
are relative to an asymmetric MAID. It is also still unclear 
how the structural arcs influence the strategic relevance. 
Research in this area, especially finding a graphical 
criterion like s-reachability would be a great extension. 
Finally, another extension would be finding an algorithm 
which can directly compute the equilibrium without 
transforming the game to an extensive.   
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